Fundamental Electrical Concepts

Charge, Current, Voltage,
Power and Energy
Chapter 2, sec. 2.2 \& 2.3

Electric Charge (Q)

- Characteristic of subatomic particles that determines their electromagnetic interactions
- An electron has a -1.602•10-19 Coulomb charge
- The rate of flow of charged particles is called current

Current (I)

- Current $=$ (Number of electrons that pass in one second) • (charge/electron)
>-1 ampere $=\left(6.242 \cdot 10^{18} \mathrm{e} / \mathrm{sec}\right) \cdot\left(-1.60210^{-19} \mathrm{Coulomb} / \mathrm{e}\right)$
$>$ Notice that an ampere $=$ Coulomb/second
- The negative sign indicates that the current inside is actually flowing in the opposite direction of the electron flow

Current

- $\mathrm{i}=\mathrm{dq} / \mathrm{dt}-$ the derivitive or slope of the charge when plotted against time in seconds
- $\mathrm{Q}=\int \mathrm{i} \cdot \mathrm{dt}$ - the integral or area under the current when plotted against time in seconds

AC and DC Current

-DC Current has a constant value

- AC Current has a value that changes sinusoidally

$>$ Notice that AC current changes in value and direction
$>$ No net charge is transferred

Why Does Current Flow?

- A voltage source provides the energy (or work) required to produce a current
$>$ Volts = joules/Coulomb = dW/dQ
- A source takes charged particles (usually electrons) and raises their potential so they flow out of one terminal into and through a transducer (light bulb or motor) on their way back to the source's other terminal

Voltage

- Voltage is a measure of the potential energy that causes a current to flow through a transducer in a circuit
- Voltage is always measured as a difference with respect to an arbitrary common point called ground
- Voltage is also known as electromotive force or EMF outside engineering

A Circuit

- Current flows from the higher voltage terminal of the source into the higher voltage terminal of the transducer before returning to the source

\Rightarrow The source expends energy \& the transducer converts it into something useful

Passive Devices

- A passive transducer device functions only when energized by a source in a circuit
$>$ Passive devices can be modeled by a resistance
- Passive devices always draw current so that the highest voltage is present on the terminal where the current enters the passive device

$>$ Notice that the voltage is measured across the device
> Current is measured through the device

Active Devices

- Sources expend energy and are considered active devices
- Their current normally flows out of their highest voltage terminal
- Sometimes, when there are multiple sources in a circuit, one overpowers another, forcing the other to behave in a passive manner

Power

- The rate at which energy is transferred from an active source or used by a passive device
- P in watts $=d W / d t=$ joules/second
- $P=V \cdot I=d W / d Q \cdot d Q / d t=$ volts $\cdot \operatorname{amps}=$ watts
- $W=\int P \cdot d t-$ so the energy (work in joules) is equal to the area under the power in watts plotted against time in seconds

Conservation of Power

- Power is conserved in a circuit - $\sum \mathrm{P}=0$
- We associate a positive number for power as power absorbed or used by a passive device
- A negative power is associated with an active device delivering power

$$
\begin{array}{|l}
\hline \text { If } \mathrm{I}=-1 \mathrm{amp} \\
\mathrm{~V}=5 \text { volts } \\
\text { Then active } \\
\mathrm{P}=-5 \text { watts } \\
\text { (delivered) } \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { If } \mathrm{I}=-1 \text { amp } \\
& \mathrm{V}=-5 \text { volts } \\
& \text { Then passive } \\
& \mathrm{P}=+5 \text { watts } \\
& \text { (absorbed) } \\
& \hline
\end{aligned}
$$

Example

- A battery is 11 volts and as it is charged, it increases to 12 volts, by a current that starts at 2 amps and slowly drops to 0 amps in 10 hours (36000 seconds)
- The power is found by multiplying the current and voltage together at each instant in time
- In this case, the battery (a source) is acting like a passive device (absorbing energy)

Voltage, Current \& Power

Energy

- The energy is the area under the power curve $>$ Area of triangle $=.5 \cdot$ base \cdot height
$>W=$ area $=.5 \cdot 36000 \mathrm{sec} \cdot \cdot 22 \mathrm{watts}=396000 \mathrm{~J}$.
$>W=$ area= $.5 \cdot 10 \mathrm{hr} \cdot \cdot .022 \mathrm{Kw} .=110 \mathrm{Kw} \cdot \cdot \mathrm{hr}$
- So $1 \mathrm{Kw} \cdot \mathrm{hr}=3600 \mathrm{~J}$.
- Since $1 \mathrm{Kw} \cdot \mathrm{hr}$ costs about $\$ 0.10$, the battery costs $\$ 11.00$ to charge

Homework Application

- Calculate the cost per mile of a plug-in electric vehicle with the following parameters
$>$ A 120 volt source is used for 6 hours at a current of 20 amps at a cost of $\$ 0.10 / \mathrm{KWhr}$ each night to charge the battery pack in the vehicle
$>$ The car will operate for 50 miles on a charge
- Determine the cost per mile for a gas-powered vehicle getting 25 mpg using $\$ 3.75$ per gal. gas
- How much would you save in fuel cost per year if you averaged 40 plug-in miles per day

